Божественная пропорция: Золотое сечение

image_13

«В геометрии существует два сокровища: первое – теорема Пифагора, второе – золотое сечение. Первое можно сравнить с мерой золота, второе – с драгоценным камнем». Кеплер

От греческого Парфенона до раковины моллюска, золотое сечение является золотым стандартом для создания хорошего проекта. Ученые до сих пор не выяснили, почему это гармоничное соотношение встречается повсюду в окружающем нас мире

Газета, которую вы читаете, монитор вашего компьютера, ваша кредитная карточка, лепестки цветка, листья дерева, здание на улице, – все это определяется одним принципом, одной пропорцией, одной гармоничной величиной. Вселенная словно зашифровала для нас в каждом уголке природы код, – уникальный и эстетически гармоничный: Божественную пропорцию, золотое сечение.

За кажущимся хаосом, господствующим во Вселенной, где каждое событие и величина, по логике вещей, следуют неопределенному ходу событий, тем не менее, существует скрытый порядок. Со времен Пифагора разгадка этой последовательности, интриговавшей столь многих математиков и ученых из различных областей, никогда так и не была полностью найдена.

В одном из современных экспериментов, в котором участвовали люди различной этнической принадлежности, демонстрировалось несколько прямоугольных фигур. Почти все участники выбрали одну и ту же фигуру как наиболее гармоничную. У этой фигуры отношение между большей и меньшей сторонами равнялось 1,618 – числу, известному в математике как «золотое». Это соотношение заложено в основе тысяч архитектурных сооружений во всем мире, а также присутствует в спичечных коробках, визитных карточках, книгах и сотнях других повседневных предметов просто потому, что людям нравится эта пропорция. Великая пирамида Гизы, штаб-квартира ООН в Нью-Йорке и Собор Парижской Богоматери, – у всех них имеется это соотношение. Фактически, греческий Парфенон представляет собой оду этой пропорции.

На протяжении веков совершенное выражение красоты и человеческой мудрости в изобразительном искусстве (за исключением некоторых современных тенденций) никогда не отклонялось от правила золотого сечения. Некоторые художники эпохи Возрождения включали золотое сечение в свои произведения, в том числе Леонардо да Винчи, который использовал эту пропорцию в своих знаменитых работах, таких как «Тайная вечеря» и «Витрувианский человек».

Музыка также содержит этот загадочный код. Мексиканский композитор Сильвестр Ревуэльтас использовал золотое сечение для аранжировки части своей известной композиции «Alcancias». Композиторы Бэла Барток и Оливье Мессиан соблюдали последовательность Фибоначчи (содержащую золотое сечение) в некоторых из своих работ для определения длительности звучания нот.

Поскольку архитектура, изобразительное искусство, музыка и другие виды культуры изобретены человеком, некоторые могут прийти к заключению, что золотое сечение выбрано случайно, что оно было выбрано в результате общей договоренности представителей рода человеческого. Но это не объясняет наличия в природе бесчисленных органических и неорганических сущностей, в которых эта особая пропорция повторяется бесконечное количество раз.

От прямоугольника до золотой спирали (которая образована объединением множества золотых прямоугольников), – подобные примеры можно обнаружить повсюду: в бараньем роге, кристаллах минералов, вихрях, торнадо, отпечатках пальцев, лепестках розы, концентрических узорах цветной капусты или подсолнуха. У птиц, насекомых, рыб, во Млечном Пути, в других галактиках, таких, как наш сосед M51 или даже у… улитки. Идеальная и красивая раковина моллюска, например, наутилуса, фактически представляет собой символ золотого сечения. Во многих деревьях можно тоже обнаружить золотую пропорцию.

Венера Милосская. Шедевр античного искусства. Отношение между расстоянием от головы до стоп и от пупка до стоп равняется золотому числу фи (1,618), так же как отношение длины головы к расстоянию между глазами и подбородком; или отношение расстояния от носа до подбородка к расстоянию между губами и подбородком. Чем больше лицо соответствует этим пропорциям, тем более гармоничным оно кажется
Венера Милосская. Шедевр античного искусства. Отношение между расстоянием от головы до стоп и от пупа до стоп равняется золотому числу фи (1,618), так же как отношение длины головы к расстоянию между глазами и подбородком; или отношение расстояния от носа до подбородка к расстоянию между губами и подбородком. Чем больше лицо соответствует этим пропорциям, тем более гармоничным оно кажется
Эстетика человеческого тела также содержит в себе число фи (золотое число). Отношение между расстоянием от головы до стоп и от пупа до стоп подтверждает это совершенное и гармоничное число 1,618 в нашем теле. Мы можем получить соответствующий результат, найдя отношение длины головы к расстоянию между глазами и подбородком; или отношение расстояния от носа до подбородка к расстоянию между губами и подбородком. Чем больше лицо соответствует этим пропорциям, тем более гармоничным оно кажется. Таким образом, несмотря на существование противоположных мнений, оказывается, что наши вкусы в какой-то степени предопределены.

Число фи, подобно своему кузену пи (отношению длины окружности к её диаметру), крайне сложно. В наше время оно рассчитано с точностью до триллиона цифр после запятой, и все же, это еще не конец.

Скрытая причина существования этого кода, который словно господствует над красотой и гармонией, зачаровывала ученых на протяжении веков. Она продолжает оставаться загадкой и по сей день.

Как такое возможно, чтобы четко определенная спираль служила общим знаменателем для тысяч биологических организмов, которые, как предполагается, эволюционировали исключительно непредсказу емым образом?

Поскольку, как представляется, золотое число служит общим кодом для всех жизненных форм, – гармоничным тоном, в котором вибрирует Вселенная, – то неслучайно, что эта Божественная пропорция кажется нам гармоничной, так как мы из Вселенной возникли и ей принадлежим.

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Немецкий профессор Г.Е.Тимердинг, написавший в первой четверти ХХ века книгу о золотом сечении, констатирует: «У пифагорейцев <…> с правильным пятиугольником была связана мысль о таинственных силах и свойствах, но эти свойства обнаруживаются лишь тогда, когда рядом с обыкновенным правильным пятиугольником будет рассматриваться та звезда, которая получается при последовательном соединении через одну всех вершин обыкновенного пятиугольника, составленная диагоналями пятиугольника», — и далее отмечает: пентаграмма играла большую роль во всех магических науках. Пятиконечная звезда, как показывает Тимердинг, буквально нашпигована пропорциями золотого сечения.
Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Рис. 1. Динамические прямоугольники

Платон (427…347 гг. до н.э.) также знал о золотом делении. Пифагореец Тимей в одноименном диалоге Платона говорит: «Невозможно, чтобы две вещи совершенным образом соединились без третьей, так как между ними должна появиться вещь, которая скрепляла бы их. Это наилучшим образом может выполнить пропорция, ибо если три числа обладают тем свойством, что среднее так относится к меньшему, как большее к среднему, и, наоборот, меньшее так относится к среднему, как среднее к большему, то последнее и первое будет средним, а среднее — первым и последним. Таким образом, все необходимое будет тем же самым, а так как оно будет тем же самым, то оно составит целое». Земной мир Платон строит, используя треугольники двух сортов: равнобедренные и неравнобедренные. Прекраснейшим прямоугольным треугольником он считает такой, в котором гипотенуза вдвое больше меньшего из катетов (такой прямоугольник является половиной равностороннего, основной фигуры вавилонян, в нем выступает отношение 1 : 31/2, отличающееся от золотого сечения примерно на 1/25, и называемое Тимердингом «соперником золотого сечения»). С помощью треугольников Платон строит четыре правильных многогранника, ассоциируя их с четырьмя земными элементами (землей, водой, воздухом и огнем). И лишь последний из пяти существующих правильных многогранников — додекаэдр, всеми двенадцатью гранями которого служат правильные пятиугольники, претендует на символическое изображение небесного мира.
Честь открытия додекаэдра (или, как полагалось, самой Вселенной, этой квинтэссенции четырех стихий, символизируемых, соответственно, тетраэдром, октаэдром, икосаэдром и кубом) принадлежит Гиппасу, впоследствии погибшему при кораблекрушении. В этой фигуре действительно запечатлено множество отношений золотого сечения, поэтому последнему отводилась главная роль в небесном мире, на чем впоследствии и настаивал брат минорит Лука Пачоли.
В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 2. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.
В средние века пентаграмма подверглась демонизации (как, впрочем, и многое, что почиталось божественным в античном язычестве) и нашла приют в оккультных науках. Однако Возрождение вновь выносит на свет и пентаграмму, и золотое сечение. Так, широкое хождение в тот период утверждения гуманизма обрела схема, описывающая строение человеческого тела:

К такой картинке, по сути воспроизводящей пентаграмму, неоднократно прибегал и Леонардо да Винчи. Ее интерпретация: тело человека обладает божественным совершенством, ибо заложенные в нем пропорции — такие же, как в главной небесной фигуре. Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.
Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «О божественной пропорции» (De divina proportione, 1497, изд. в Венеции в 1509 г.) с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Такая пропорция лишь одна, а единственность — высочайшее свойство Бога. В ней воплощено святое триединство. Эта пропорция не может быть выражена доступным числом, остается скрытой и тайной и самими математиками называется иррациональной (так и Бог не может быть ни определен, ни разъяснен словами). Бог никогда не изменяется и представляет всё во всем и всё в каждой своей части, так и золотое сечение для всякой непрерывной и определенной величины (независимо от того, большая она или малая) одно и то же, не может быть ни изменено, ни по иному воспринято рассудком. Бог вызвал к бытию небесную добродетель, иначе называемую пятой субстанцией, с ее помощью и четыре других простых тела (четыре стихии — землю, воду, воздух, огонь), а на их основе вызвал к бытию всякую другую вещь в природе; так и наша священная пропорция, согласно Платону в «Тимее», дает формальное бытие самому небу, ибо ему приписывается вид тела, называемого додекаэдром, который невозможно построить без золотого сечения. Таковы аргументы Пачоли.
Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.
В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».
Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица — ртом и т.д. Известен пропорциональный циркуль Дюрера.
Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).
Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, — писал он, — что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».
Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).
Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов

Рис. 3. Построение шкалы отрезков золотой пропорции

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Рис. 4. Золотые пропорции в частях тела человека

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа — важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 : 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 : 5 = 1,6. У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела — длина плеча, предплечья и кисти, кисти и пальцев и т.д.
Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.
В конце XIX — начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.
Немного геометрии
В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d.
Отрезок прямой АВ можно разделить на две части следующими способами:
на две равные части — АВ : АС = АВ : ВС;
на две неравные части в любом отношении (такие части пропорции не образуют);
таким образом, когда АВ : АС = АС : ВС.
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.
Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему
a : b = b : c или с : b = b : а.

Рис. 5. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 6. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618…, если АВ принять за единицу, ВЕ = 0,382… Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая — 38 частям.
Свойства золотого сечения описываются уравнеием:
x2 — x — 1 = 0.
Решение этого уравнения:

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44 : 56.
Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.

Рис. 7. Построение второго золотого сечения

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56 : 44.

Рис. 8. Деление прямоугольника линией второго золотого сечения

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.
Золотой треугольник
Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Рис. 9. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471…1528). Пусть O — центр окружности, A — точка на окружности и Е — середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.
Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Рис. 10. Построение золотого треугольника

Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.
Ряд Фибоначчи
С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Месяцы 0 1 2 3 4 5 6 7 8 9 10 11 12 и т.д.
Пары кроликов 0 1 1 2 3 5 8 13 21 34 55 89 144 и т.д

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение — 0,618 : 0,382 — дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.
Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16…
Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.
Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.
Факты, подтверждающие существование золотых сечений и их производных в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых пропорций. Это позволило автору выдвинуть гипотезе о том, что золотые сечения есть числовые постоянные для самоорганизующихся систем. Подтвержденная экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики — новой области науки, изучающей процессы в самоорганизующихся системах.
Принципы формообразования в природе
Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах — рост вверх или расстилание по поверхности земли и закручивание по спирали.
Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Рис. 11. Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.
Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».
Среди придорожных трав растет ничем не примечательное растение — цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.

Рис. 12. Цикорий

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий — 38, четвертый — 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Рис. 13. Ящерица живородящая

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции — длина ее хвоста так относится к длине остального тела, как 62 к 38.
И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы — симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.
Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Рис. 14. Яйцо птицы

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.
Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.
Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.
Золотое сечение и симметрия
Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863…1925) считал золотое сечение одним из проявлений симметрии.
Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии Согласно современным представлениям золотое деление — это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая — движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она — свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения.
Наблюдать и применять
Понимание и использование принципа золотого сечения не должно быть уделом некоей элиты — это самое базовое знание, с которого начинаются бесконечно сложные законы гармонии и соизмерения. Нет границ осмысленному применению этих законов в жизни каждого дня. Выделение главного и второстепенного по отношению к целому может касаться чего угодно. Это и распределение своего времени, и любой творческий процесс, включая все виды искусства, литературу, музыку, и формирование собственного отношения к любым процессам и явлениям. Это и есть тот Золотой, срединный путь, о котором говорили древние.

Источники информации:

  1. Ковалев Ф.В. Золотое сечение в живописи. Высшая школа
  2. Кеплер И. О шестиугольных снежинках. –
  3. Дюрер А. Дневники, письма, трактаты.
  4. Цеков-Карандаш Ц. О втором золотом сечении.
  5. Стахов А. Коды золотой пропорции.